Bieberbach Conjecture, The de Branges and Weinstein Functions And the Askey-Gasper Inequality
نویسنده
چکیده
In this talk I will present the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [4] follows, and I will show how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and I will give a computer demonstration how important parts of the proofs can be automated.
منابع مشابه
Bieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [4]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Lou...
متن کاملWeinstein's Functions and the Askey-gasper Identity Weinstein's Functions and the Askey-gasper Identity
In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums that was found by Askey and Gasper in 1973, published in 1976. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system which (by Todorov and Wilf) was realize...
متن کاملWeinstein’s Functions and the Askey-Gasper Identity
In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums that was found by Askey and Gasper in 1973, published in 1976. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system which (by Todorov and Wilf) was realize...
متن کاملSolution properties of the de Branges differential recurrence equation
In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums that was published by Askey and Gasper in 1976. The de Branges functions τ k (t) are defined as the solutions of a system of differential recurrence equations with suitably given initial values. The essential fact used in ...
متن کاملA tribute to Dick Askey
Richard A. (Dick) Askey1 was born June 4, 1933 in St. Louis, Missouri. He received his PhD at Princeton University in 1961 under the direction of Salomon Bochner. After instructorships at Washington University and the University of Chicago he joined the faculty of the University of Wisconsin-Madison in 1963, where he became full professor in 1968. Since 2003 he is Professor Emeritus at that sam...
متن کامل